Dynamic range and mass accuracy of wide-scan direct infusion nanoelectrospray fourier transform ion cyclotron resonance mass spectrometry-based metabolomics increased by the spectral stitching method.

نویسندگان

  • Andrew D Southam
  • Tristan G Payne
  • Helen J Cooper
  • Theodoros N Arvanitis
  • Mark R Viant
چکیده

Direct infusion nanoelectrospray Fourier transform ion cyclotron resonance mass spectrometry (DI nESI FT-ICR MS) offers high mass accuracy and resolution for analyzing complex metabolite mixtures. High dynamic range across a wide mass range, however, can only be achieved at the expense of mass accuracy, since the large numbers of ions entering the ICR detector induce adverse space-charge effects. Here we report an optimized strategy for wide-scan DI nESI FT-ICR MS that increases dynamic range but maintains high mass accuracy. It comprises the collection of multiple adjacent selected ion monitoring (SIM) windows that are stitched together using novel algorithms. The final SIM-stitching method, derived from several optimization experiments, comprises 21 adjoining SIM windows each of width m/z 30 (from m/z 70 to 500; adjacent windows overlap by m/z 10) with an automated gain control (AGC) target of 1 x 10(5) charges. SIM-stitching and wide-scan range (WSR; Thermo Electron) were compared using a defined standard to assess mass accuracy and a liver extract to assess peak count and dynamic range. SIM-stitching decreased the maximum mass error by 1.3- and 4.3-fold, and increased the peak count by 5.3- and 1.8-fold, versus WSR (AGC targets of 1 x 10(5) and 5 x 10(5), respectively). SIM-stitching achieved an rms mass error of 0.18 ppm and detected over 3000 peaks in liver extract. This novel approach increases metabolome coverage, has very high mass accuracy, and at 5.5 min/sample is conducive for high-throughput metabolomics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Applications of Fourier Transform Ion Cyclotron Resonance (FT-ICR) and Orbitrap Based High Resolution Mass Spectrometry in Metabolomics and Lipidomics

Metabolomics, along with other "omics" approaches, is rapidly becoming one of the major approaches aimed at understanding the organization and dynamics of metabolic networks. Mass spectrometry is often a technique of choice for metabolomics studies due to its high sensitivity, reproducibility and wide dynamic range. High resolution mass spectrometry (HRMS) is a widely practiced technique in ana...

متن کامل

Clarification of pathway-specific inhibition by Fourier transform ion cyclotron resonance/mass spectrometry-based metabolic phenotyping studies.

We have developed a metabolic profiling scheme based on direct-infusion Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR/MS). The scheme consists of: (1) reproducible data collection under optimized FT-ICR/MS analytical conditions; (2) automatic mass-error correction and multivariate analyses for metabolome characterization using a newly developed metabolomics tool (DMASS sof...

متن کامل

Direct Analysis in Real Time (DART) of an Organothiophosphate at Ultrahigh Resolution by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry and Tandem Mass Spectrometry

Direct analysis in real time (DART) is a recently developed ambient ionization technique for mass spectrometry to enable rapid and sensitive analyses with little or no sample preparation. After swab-based field sampling, the organothiophosphate malathion was analyzed using DART-Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS) and tandem mass spectrometry (MS/MS). Mass r...

متن کامل

Advanced Mass Spectrometric Methods for the Rapid and Quantitative Characterization of Proteomes

UNLABELLED Progress is reviewed towards the development of a global strategy that aims to extend the sensitivity, dynamic range, comprehensiveness and throughput of proteomic measurements based upon the use of high performance separations and mass spectrometry. The approach uses high accuracy mass measurements from Fourier transform ion cyclotron resonance mass spectrometry (FTICR) to validate ...

متن کامل

High-throughput and high-sensitivity quantitative analysis of serum unsaturated fatty acids by chip-based nanoelectrospray ionization-Fourier transform ion cyclotron resonance mass spectrometry: early stage diagnostic biomarkers of pancreatic cancer.

In this study, Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) coupled with chip-based direct-infusion nanoelectrospray ionization source (CBDInanoESI) in a negative ion mode is first employed to evaluate the effect of serum and its corresponding supernatant matrixes on the recoveries of serum free fatty acids (FFAs) based on spike-and-recovery experimental strategy by ad...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Analytical chemistry

دوره 79 12  شماره 

صفحات  -

تاریخ انتشار 2007